on evidence from Raman spectroscopy that a relatively unperturbed methyl fluoride moiety is present in CH₃F-SbF₅-SO₂.^{1b} We presume that the band at 1008 cm⁻¹, close to that of CH₃F (1010) arises from 1. Although the close coincidence is unusual, it may be noted that in terms of 2a or 2b it is also remarkable that the Raman frequency is so slightly perturbed in the "complex" while NMR spectra are substantially different from those of CH₃F.

(3) Carbon NMR. The ¹³C NMR spectrum of CH₃F-SbF₅-SO₂ (δ (CS₂) 119, $J_{CH} = 149$ Hz) appears to be equally compatible with structures 1 and 2a or 2b.

(4) Fluorine NMR results. An analogue of the structure 1 is formed from EtF-SbF5.^{1,2} In terms of the complex structure, the conversion of 7 (analogous to 2b) to tert-butyl cation (eq 5) gave puzzling ¹⁹F NMR results.

$$2CH_{3}CH_{2}F \rightarrow Sb_{2}F_{10} \rightarrow H^{+} + (CH_{3})_{3}C^{+} + 2Sb_{2}F_{11}^{-}$$
(5)

Bacon and Gillespie² noted: "We are forced to the, at first sight, somewhat surprising conclusions that the fluorine spectrum of $Sb_2F_{11}^{-}$ is essentially the same when it is present as the free ion together with the tert-butyl cation or in a complex with ethyl ion." The proposal that the reactant has the ethylated SO₂ structure [CH₃CH₂O=S=O]⁺ resolves the problem, since $Sb_2F_{11}^{-}$ is present also in the reactant.

(5) The Apparent Formation of 2a or 2b in Other Solvents. According to our hypothesis the species formed from CH₃F-SbF₅ in SO₂ClF (δ 5.6), 1:1 HF-SbF₅ (δ 5.5), and neat SbF₅ (δ 5.5), previously assumed to be identical with that formed in SO₂ (δ 5.56), must have structures different from 1. Anticipating that readers would be reluctant to accept this coincidence, we have reprepared solutions of CH₃F-SbF₅-SO₂ClF. The previously undetermined ¹³C NMR chemical shift, 81.92 ppm from Me₄Si, is, in fact, 8.21 ppm from that found in CH_3F -SbF₅·SO₂ solutions (δ (Me₄Si) 73.71, our value, or 74.8^{2b,7}). That solvent effects were not responsible for the difference is indicated by our finding that 16¹³C chemical shifts in four nonequilibrating halonium ions in SO₂ClF were within the range -0.64 to +0.9 from their value in SO₂.⁸ Accordingly, a species different from 1, possibly methylated SO₂ClF or one of the originally proposed structures 2a or 2b, is present in the SO₂ClF system. The formation of a precipitate upon addition of SO₂ is readily interpreted as a reaction to form an insoluble salt of methylated SO₂, 1, whereas 2a or 2b should not have given a precipitate, since, according to the previous interpretation, they are soluble in both solvents.

Our results suggest that other nucleophiles may be found to react with CH₃F-SbF₅-SO₂ at sulfur, followed by rearrangement to products of reaction at carbon. The results also indicate that methyl and primary cations cannot be formed in SO₂ solutions because they react with SO₂, not with SbF_6^- as previously thought. The possibility that cations of intermediate stability (between primary and tertbutyl) will exist in closely balanced, temperature dependent⁹ equilibria with their SO₂ reaction products is suggested.

References and Notes

- (a) G. A. Olah, J. R. DeMember, and R. H. Schlosberg, J. Am. Chem. Soc., 91, 2112 (1969); (b) G. A. Olah, J. R. DeMember, R. H. Schlosberg, and Y. Halpern, *ibid.*, 94, 156 (1972).
 (2) J. Bacon and R. J. Gillespie, J. Am. Chem. Soc., 93, 6914 (1971).
 (3) The yield of dimetryl sulfite was 44%, based on GC analysis of the metric and explanation. (200)
- methanol solution. The products of reaction with ethanol (30 s, -65° were poured over ice-water and immediately extracted with CH_2Cl_2 to avoid complete transesterification, discussed later in this communication. Relative percent: dimethyl sulfite (4, 18%), methyl ethyl sulfite (5, 62%), and diethyl sulfite (6, 20%).
- (4) Pure samples for quantitative gas chromatography were obtained by high-speed spinning-band distillation. (5) For a similar result see E. Bourgeois and A. Vande Casteel, Bull. Soc.

Chim. Belg., 12, 980 (1927); "Beilsteins Handbuch der Organischen Chemle'', 4th ed, 2d Suppl., Vol I, p 326. P. E. Peterson, R. Brockington, and M. Dunham, J. Am. Chem. Soc., 97,

- (6) 3517 (1975)
- Converted from CS₂ reference by subtraction from 193.8 ppm.
- (8) S. P. McManus and P. E. Peterson, unpublished values. Cf. S. P. McManus and P. E. Peterson, Tetrahedron Lett., 2753 (1975).
- (9) P. M. Henrichs and P. E. Peterson, J. Am. Chem. Soc., 95, 7449 (1973).

Paul E. Peterson,* Rhett Brockington, D. Warren Vidrine Department of Chemistry, University of South Carolina Columbia, South Carolina 29208 Received October 25, 1975

Observation of the Methyl Fluoride-Antimony Pentafluoride Complex in Sulfuryl Fluoride Solution, an **Exceedingly Low Nucleophilicity Solvent. Reinvestigation** of the Complex in Sulfur Dioxide and Sulfuryl Chloride Fluoride Solution Showing O-Methylation¹

Sir:

In our previous studies we have described the complex formed between methyl fluoride and antimony pentafluoride in sulfur dioxide and sulfuryl chloride fluoride solution, and reported its exceptional methylating ability.^{2,3}

An unusual aspect of the CH₃F-SbF₅ complex in SO₂ and SO₂ClF solution was the absence of H-F coupling in the NMR spectra, showing a singlet 'H NMR absorption at δ 5.56 and 5.63, respectively. As there was no exchange with excess uncomplexed methyl fluoride or antimony pentafluoride, we interpreted the results as a rapid intramolecular fluorine exchange in the complex. We have reported that O-methylation of sulfur dioxide by the complex can take place, but considered it to be a fast reversible process. We have, however, not suggested that this process, rather than the intramolecular fluorine exchange process, would be responsible for the absence of H-F coupling. This consideration was supported by the observation of a very similar spectrum of the complex in SO₂ClF solution, a system in which previously no alkylation by any carbocationic species was observed. Further, the methyl fluoride complex showed little deshielding in its ¹³C NMR spectrum in SO₂ (δ_{13C} 76.0) compared to methyl fluoride itself (δ_{13C} 74.9, INDOR data) and the Raman spectra also indicated tetrahedral symmetry around carbon. Thus the suggestion at the time seemed reasonable.

In our continued work, we have found that it was possible to isolate a relatively stable complex of methyl fluorideantimony pentafluoride as a crystalline salt from the SO₂ solution. Elementary analysis, however, showed that the complex contained bonded SO₂, which was given off upon standing. When dissolved in SO_2 the complex gave identical properties with the original solution. This observation prompted us to reinvestigate the SO₂ and SO₂ClF solution of the CH₃F-SbF₅ system, including more complete ¹³C and ¹⁹F NMR, as well as chemical studies.

The CH₃F-SbF₅-SO₂ system showed the previously reported ¹H and ¹³C NMR shifts of δ 5.50 (singlet) and δ_C 74.9 (quartet), with J_{CH} of 162.5 Hz. The CH_3F -SbF₅-SO₂ClF system also showed the previously observed ¹H NMR singlet at δ 5.63. The ¹³C NMR shift, as now determined by FT method, is at δ 81.9 with $J_{CH} = 165.9$ Hz. In addition the ¹⁹F spectrum shows, besides the characteristic broad absorption of the fluoroantimonate system ($\phi \sim 100$, studied in detail by Bacon and Gillespie,4) and that of SO₂ClF (ϕ -98.9), a singlet absorption at ϕ -90.8, which is different from that observed for the SO₂ClF-SbF₅ complex ($\phi - 94.9$).

The similarity of the methyl absorptions with those observed for O-methylated oxonium ions and the additional ¹⁹F NMR absorption seems to indicate that both SO₂ and SO₂ClF are O-methylated by the CH₃F-SbF₅ system giving stable nonexchanging ions 1 and 2.

$$CH_{3}^{+}O = S = O \quad SbF_{6}^{-} \text{ (or } Sb_{2}F_{11}^{-})$$

$$1$$

$$CH_{3}^{+}O = S = O \quad SbF_{6}^{-} \text{ (or } Sb_{2}F_{11}^{-})$$

$$\downarrow_{F}^{-}$$

$$2$$

The SO₂ solution of CH_3F -SbF₅ seems to be stable, and shows no temperature dependence, except that upon standing $(CH_3O)_2S^+$ -F is formed (due to further methylation of methyl fluorosulfite formed in the system).

We have recently shown⁵ that methyl fluorosulfite with SbF_5 and $CH_3F-SbF_5-SO_2$ forms the same complexes.

$$CH_{3}F + SbF_{5} + SO_{2} \rightleftharpoons CH_{3} \longrightarrow OSO \Longrightarrow$$

$$O$$

$$H$$

$$CH_{3}OSF + SbF_{5} \xrightarrow{CH_{3}F - SbF_{5} - SO_{2}} (CH_{3}O)_{2}SF \quad SbF_{6}$$

When the SO₂ClF solution of CH₃F-SbF₅ was allowed to warm up to 0°, irreversible formation of the dimethylchloronium ion (CH₃Cl⁺CH₃) was observed, showing the characteristic, ¹H NMR δ 4.59 (s) and ¹³C NMR δ_C 49.8 (q), J_{CH} = 160 Hz, parameters of the previously reported

$$CI \xrightarrow{CI} CH_3F-SbF_5 + SO_2CIF \implies CH_3OS = O \xrightarrow{\Delta} CH_3CICH_3$$
$$\downarrow F$$
$$SbF_5^-$$

ion.⁶ Similar observations were made from the CH_3SO_2F -SbF₅ system in SO₂ClF solution.

The initially formed CH_3F-SbF_5 complex must be, indeed, an exceedingly reactive methylating agent if it methylates not only SO₂ but also the considerable less nucleophilic SO₂ClF. Whereas SO₂ was observed previously to be alkylated by secondary alkyl cations such as the isopropyl cation and arenium ions, no previous observation of alkylation of SO₂ClF by either secondary or tertiary alkyl cations was ever made. In SO₂ClF, secondary ions such as the isopropyl and *sec*-butyl cations as well as arenium ions were found to be stable and not alkylated. The CH₃F-SbF₅ complex thus behaves as an incipient primary carbocation, showing extreme electron deficiency and reactivity.

If in SO₂ and SO₂ClF solutions of the CH₃F-SbF₅ system, O-methylation takes place, we were interested to see whether a noninteracting complex could be obtained in solvents having even lower nucleophilicity than SO₂ClF (or SO₂). We have found that sulfuryl fluoride, SO₂F₂, is indeed such a solvent. When methyl fluoride was added to a 10% solution of SbF₅ in SO₂F₂ at -80°, a CH₃F-SbF₅ donor:acceptor complex was obtained. The ¹H NMR spectrum of the SO₂F₂ solution showed a doublet at δ 5.68 with J_{C-F} of 41.2 Hz (CH₃F in SO₂F₂ shown δ 4.17 with J_{CH} 47 Hz). The coupled ¹³C NMR spectrum showed a doublet of quartets at δ_{13C} 96.8 with J_{CH} = 164.4 Hz and J_{C-F} of 126.0 Hz. The ¹⁹F NMR spectrum showed two broad signals, one characteristic of the fluoroantimonate system ($\phi \sim 100$). The other one is assigned to the fluorine of the complexed methyl fluoride (ϕ 162.2). The aliphatic fluorine

is deshielded by 108.4 ppm as compared to methyl fluoride (ϕ 270.6) in SO₂F₂.

That the addition of methyl fluoride to antimony pentafluoride in SO₂F₂ up to 1:1 molar ratio forms the same nonexchanging donor:acceptor complex as when excess methyl fluoride is present, is based on the observation of the characteristic doublet at δ 4.17 ($J_{\rm HF}$ = 47.0) in the ¹H NMR spectrum.

$$CH_3F + SbF_5 \xrightarrow{SO_2F_2} CH_3F \longrightarrow SbF_5 (or \longrightarrow Sb_2F_{10})$$

No intramolecular fluorine exchange or exchange between the donor:acceptor complex and methyl fluoride occurs.

To obtain further direct proof for the methylation of SO_2 and SO_2ClF by the CH_3F -SbF₅ system we added SO_2 and SO_2ClF , respectively, to solutions of the complex in SO_2F_2 solution. We were able to observe the formation of 1 and 2 giving identical spectra with those observed in SO_2 or SO_2ClF solution of CH_3F -SbF₅.

The C₂H₅F-SbF₅ system in SO₂ solution was also found to be similar to the CH₃F-SbF₅ system, giving the C₂H₅O+SO ion which upon raising the temperature undergoes intermolecular equilibration with excess SO₂. In this process the ethyl cation C₂H₅⁺ is an intermediate, as shown by the complete hydrogen and carbon scrambling observed, and further indicated by the reversible collapse of the ethyl group's triplet-quarter ¹H NMR absorption. In SO₂ClF solution the diethylchloronium ion is rapidly formed. There is, on occasion, even at -120° some formation of *tert*-butyl cation (or higher *tert*-alkyl cations). In SO₂F₂ solution the C₂H₅-F-SbF₅ complex is not observed, but readily forms the *tert*-butyl cation, and related other alkyl cations, showing the ease with which C₂H₅⁺ is deprotonated and then further alkylated.

We consider the reported observations of substantial significance. They show that not only SO₂ but also SO₂ClF can display nucleophilic nature against exceedingly electron deficient, incipient primary carbocation systems. SO₂F₂, however, was found to be entirely nonnucleophilic and thus can be of significance as a noninteracting solvent for superacid-carbocation systems.

The alkylating ability of the CH_3F -SbF₅ (and C_2H_5F -SbF₅) systems reported previously are not affected by present observations, even if in SO2 or SO2ClF solution intermediate O-alkylated complexes are formed. The results of extensive studies of long-lived carbocations in superacidic systems using SO₂ or SO₂ClF as solvents are also not affected by present observations of the methyl (ethyl) fluoride systems. We have studied a wide range of tertiary and secondary carbocations under identical conditions in SO₂, SO₂ClF, and SO₂F₂ solutions and found no evidence of Oalkylation with tertiary carbocations (or if equilibria exist they are entirely on the carbocation side, with only small solvent effects observed). Secondary carbocations show an increased ability to O-alkylate sulfur dioxide, but not sulfuryl chloride fluoride. The isopropyl or sec-butyl cations, for example, are stable in SO₂ClF, but not in SO₂ solution where O-alkylation and subsequent cleavage-condensation reactions take place. SO₂F₂ has not affected any of the studied carbocationic systems. Results of these studies, including a comprehensive study of solvent effects, will be reported in full.

Acknowledgment. Support of our work by the National Science Foundation is gratefully acknowledged.

References and Notes

⁽¹⁾ Friedel-Crafts Chemistry, Part 10. Part 9, G. A. Olah, J. Nishimura, and Y. Yamada. J. Org. Chem., **39**, 2430 (1974).

- (2) G. A. Olah, J. R. DeMember, and R. H. Schlosberg, J. Am. Chem. Soc., 91, 2112 (1969).
- (3) G. A. Olah, J. R. DeMember, R. H. Schlosberg, and Y. Halpern, J. Am. Chem. Soc., 94, 156 (1972).
- (4) J. Bacon, and R. J. Gillespie, *J. Am. Chem. Soc.*, **93**, 6914 (1971).
 (5) G. A. Olah, P. Schilling, J. M. Bollinger, and J. Nishimura, *J. Am. Chem. Soc.*, **96**, 2221 (1974).
- (6) G. A. Olah, "Halonium lons", Wiley-Interscience, New York, N.Y., 1975, and references given therein.
- (7) G. A. Olah, Y. Halpern, J. Shen, and Y. K. Mo., J. Am. Chem. Soc., 95, 4960 (1973).
- (8) S. P. McManus and P. E. Peterson, Tetrahedron Lett., 2753 (1975).

George A. Olah,* Daniel J. Donovan, Henry C. Lin Department of Chemistry, Case Western Reserve University Cleveland, Ohio 44106 Received October 29, 1975

Inversion at Pyramidal Oxygen and Sulfur¹

Sir:

Inversion about pyramidal nitrogen is a well-established phenomenon.² One way in which the rate of this inversion has been measured in solution is by proton magnetic resonance spectroscopy of tertiary benzyl amines.^{3,4} Pyramidal geometry about tricoordinate oxygen has been established for $H_3O^+Cl^$ in the solid,⁵ and probably for $(CH_3)_2OBF_3$ in the gas phase.⁶ Pyramidal geometry about oxygen in the liquid phase and the barrier to inversion have been determined for the oxonium salts of oxirane,⁷ but not for a neutral species. Pyramidal configuration about trigonal sulfur was established many years ago by isolation of optically active trialkyl sulfonium salts.⁸ The barrier to inversion in these salts is so high that racemization occurs by dissociation and recombination of the sulfonium ion.^{9,10}

When a CH₂ group is bonded to a carbon atom bearing three different substituents the two methylene protons will be magnetically nonequivalent regardless of the rate of rotation about the carbon-carbon bond between the asymmetric center and the methylene group.¹¹ A similar situation prevails if the asymmetric center has only three groups but is held in a pyramidal configuration.¹² Upon inversion about the pyramidal center the nonequivalence of the methylene protons will be lost.

The BF₃ complex of benzyl ethyl ether was prepared by condensing equimolar quantities of the two reactants, separated by the sulfur dioxide solvent, into an NMR sample tube at liquid nitrogen temperature on a vacuum line. Upon thawing and mixing the complex is formed. The proton resonance spectrum of such a sample at 100 MHz and -65 °C is interpreted as having nonequivalent methylene protons. These results indicate slow inversion about pyramidal oxygen in the complex.

The ether alone, in sulfur dioxide as solvent, has sharp single lines from the aromatic protons at 7.26 ppm and the benzylic protons at 4.42 ppm, a quartet at 3.51 ppm from the methylene protons, and a triplet at 1.16 ppm from the methyl protons at both 25 and -65 °C. The para proton is shifted to 6.4 ppm and the ortho and meta protons to 7.0 ppm upon reaction with 1 equiv of BF₃. The three envelopes remain broad from 25 to -65 °C. The methyl triplet is shifted downfield to 1.46 ppm and the methylene quartet to 4.30 ppm at 25 °C. By -65 °C a complex but sharp pattern of lines is observed for the ethyl group and may be analyzed for the following parameters.

$$\begin{split} \delta CH_3 &= 1.45 \text{ ppm} \qquad J_{CH_{3}-A} &= 7.3 \text{ Hz} \\ \delta CH_A &= 4.24 \text{ ppm} \qquad J_{CH_{3}-B} &= 7.3 \text{ Hz} \\ \delta CH_B &= 4.36 \text{ ppm} \qquad J_{A-B} &= 14.4 \text{ Hz} \end{split}$$

The broadening of the phenyl and benzyl proton signals in the complex may be explained by chemical shifts which would give

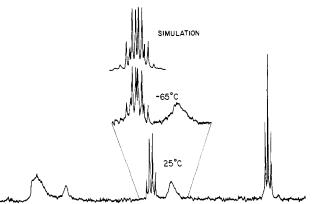


Figure 1. Experimental and theoretical proton resonance spectra of the benzyl ethyl ether boron trifluoride complex.

4.0

1 6.0

8.0

a multiplicity of unresolved lines in this complicated spin system.

Experimental spectra at 25 and -65 °C are shown in Figure 1 along with a simulated spectrum of the methylene region in the slow exchange limit. The effects of temperature upon the spectrum are completely reversible. From a comparison of experimental spectra as a function of temperature and theoretical spectra as a function of exchange rate, ¹³ ΔH^{\ddagger} is calculated to be 4.1 \pm 0.3 kcal/mol.

An unambiguous explanation of the spectral results in terms of hindered inversion about pyramidal oxygen requires refutation of the possible existence of two BF₃ complexes (with oxygen and the aromatic π electrons) and exchange between the two complexes. If there were two complexes one would expect different chemical shifts for the methyl as well as methylene protons, but the methyl lines remain narrow over the entire temperature range. The observed spectra were simulated by the spin system ABC₃. They cannot be simulated by exchange between two systems of type A₂B₃ even if the two groups of methyl protons are given the same chemical shift.

Nonequivalence of the methylene protons of benzyl ethyl ether complexes with tantalum pentafluoride has also been observed. However, complexes with niobium pentafluoride, boron trichloride, phosphorus pentafluoride, aluminum trichloride, and germanium tetrafluoride do not give nonequivalent methylene protons at low temperature. Phenetole, 2ethoxynapthalene, diethyl ether, and diallyl ether complexes also gave no evidence of nonequivalent methylene protons.

Nonequivalence of the methylene protons in a complex of diethyl sulfide with BH₃ has been observed and attributed to hindered inversion about sulfur.¹² Hindered inversion has also been observed in platinum chloride complexes of dibenzyl sulfide and the barrier to inversion was found to be 18 kcal/ mol.¹⁴ In the present study nonequivalent methylene protons were observed in the complex between diethyl sulfide and boron trichloride, but not in complexes with boron trifluoride, tantalum pentafluoride, niobium pentafluoride, germanium tetrafluoride, titanium tetrafluoride, aluminum trichloride, and tungsten hexafluoride. Additional Lewis acids and other ethers and sulfides are being investigated to determine the factors which allow nonequivalent methylene protons to be ovserved in complexes of ethers and sulfides.

References and Notes

- (1) Issued as N.R.C.C. No. 15262.
- (2) C. E. Cleeton and N. H. Williams, *Phys. Rev.*, **45**, 234 (1934).
- (3) S. Brownstein, E. C. Horswill, and K. U. Ingold, Can. J. Chem., 49, 1350
- (1971).
 (4) C. H. Bushweller, W. G. Anderson, P. E. Stevenson, and J. W. O'Neil. J. Am. Chem. Soc., 97, 4338 (1975).
- (5) Y. K. Yoon and G. B. Carpenter, Acta Crystallogr., 12, 17 (1959)
- (6) S. H. Bauer, G. R. Finlay, and A. W. Laubengayer, J. Am. Chem. Soc., 65,

1.0

2.0